(3x)^2+(4x)^2+(5x)^2=1250

Simple and best practice solution for (3x)^2+(4x)^2+(5x)^2=1250 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x)^2+(4x)^2+(5x)^2=1250 equation:



(3x)^2+(4x)^2+(5x)^2=1250
We move all terms to the left:
(3x)^2+(4x)^2+(5x)^2-(1250)=0
We add all the numbers together, and all the variables
12x^2-1250=0
a = 12; b = 0; c = -1250;
Δ = b2-4ac
Δ = 02-4·12·(-1250)
Δ = 60000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60000}=\sqrt{10000*6}=\sqrt{10000}*\sqrt{6}=100\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{6}}{2*12}=\frac{0-100\sqrt{6}}{24} =-\frac{100\sqrt{6}}{24} =-\frac{25\sqrt{6}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{6}}{2*12}=\frac{0+100\sqrt{6}}{24} =\frac{100\sqrt{6}}{24} =\frac{25\sqrt{6}}{6} $

See similar equations:

| 21^x=1 | | 3p/4+6=24 | | 520=-1.669x2+37.863x+385.739 | | 5t-3=18+3(1t);3 | | 2a/3=1/5=7/6 | | 530,000,000,000=-1.669x^2+37.863x+385.739 | | X2-5x=6 | | 5x=1= | | 3(2-5x)+5(5+7x)=(1-3x)-(2-2x) | | l/27=50 | | 2(2)-5(x-3)-3=66 | | 4(2x+8)=22x+2 | | 4(5x-2=2(9x)+3 | | 35b-b=360 | | -6=a/8 | | 148=2(4*6+4x+6x) | | 3(g+2)=1=10 | | 15=5-4x | | 8h-12h=16 | | -21=-7-7x | | 2(m-2)-3=5 | | -3(-r-12)=-6(2r-1) | | 9t+7=115 | | 3-6y=3+y | | 9=3z+4z | | -6c+-c+8c=-10 | | 8(3=w)-w=3(w+9) | | 4r-3=9r-12 | | 12u-11u-1=3 | | -5n-4=31 | | 9n-6n=9 | | -2x-26=18 |

Equations solver categories